肝硬化病论坛

注册

 

发新话题 回复该主题

智能巡检机器人行业研究报告梧桐论道梧桐 [复制链接]

1#

“当前数据中心建设属于新基建重点,机器人行业将进入新一轮爆发期。从投资角度看,全球整体市场仍在快速增长,服务机器人将迎来发展黄金时代。

本文选自梧桐树资本风险投资团队投资总监马龙的《智能巡检机器人行业研究报告》部分内容。”

「重要结论」

智能巡检机器人属于特种机器人范畴,需求较为前沿,因此必须找到:

1、有特殊工作环境(高危、艰苦、人工作业有短板),对专业服务机器人具有需求刚性;

2、有政策引导;

3、有较大需求和支付能力的下游领域,才能够支持企业的长期发展,所以对企业的技术、渠道能力(营销教育能力)和战略眼光(市场选择)等都要求较高。虽然当前特种机器人市场规模相比工业和狭义服务机器人较小,但其作用和意义重大,增长速度快。

目前智能巡检机器人主要引用的大行业有:电力、数据中心、城市综合治理。

智能电网建设和增强供电可靠性已上升为国家战略,电力系统的智能巡检机器人刚需最强。变电站巡检机器人市场潜在规模~亿元,配电站巡检机器人市场潜在规模在~亿元,在技术和政策双重利好的影响下,电力巡检无人机处于成长期到成熟期的过渡期,预计年市场规模在30-50亿元。

目前变电站巡检机器人的上市公司和准上市公司已经很多,基本以区域为划分,市场格局比较成熟。电力无人机巡检需求较刚,市场规模较大,目前发展较好的公司基本完成B轮融资,处于C轮阶段,也有部分A轮左右公司,但是和头部公司体量差距较大。

数据中心建设属于新基建重点,将进入进入新一轮爆发期。

年-年中国IDC业务市场规模复合增长率为26.9%,预计年,中国IDC业务市场规模将超过3.5亿元,同比增长28.8%。

数据中心巡检痛点明显:1)巡检工作量大,漏检误检率高;2)缺乏对网络设备及服务器主机的硬件状态监控:3)外包运维工作安全性明显:4)IT资产数据僵尸化;5)灾备机房无人管理:6)IT运维成本居高不下。

因此数据中心智能巡检机器人刚需较强。整体来看,EDC智能巡检机器人潜在市场规模应该在百亿左右,运营商IDC智能巡检机器人的潜在市场规模在~亿。

数据中心智能巡检刚需程度较强,巡检机器人市场规模较大,目前发展较好公司基本处于A轮阶段。

城市综合治理的内涵非常广,包含安防巡检、交通巡检、消防应急巡检、设施巡检等,其中安防巡检机器人市场规模最大,按照年智能安防市场亿,安防机器人占比3%计算,年安防巡检机器人市场13.5亿元。市场规模较小、刚需成都较弱、落地难度较大。

01

机器人行业发展概述

根据机器人的应用环境,国际机器人联盟(IFR)将机器人分为工业机器人和服务机器人。现阶段,考虑到我国在应对自然灾害和公共安全事件中,对特种机器人有着相对突出的需求,中国电子学会将机器人划分为工业机器人、服务机器人、特种机器人(专业机器人)三类。

机器人分类:

全球整体市场仍在快速增长,服务机器人迎来发展黄金时代。中国电子学会发布的《中国机器人产业发展报告》数据显示,年全球机器人市场规模达到.1亿美元,-年的平均增长率约为12.3%。其中,工业机器人.2亿美元,服务机器人94.6亿美元,特种机器人40.3亿美元。

年全球机器人市场结构:

(一)工业机器人

工业机器人一般为多关节机械手或多自由度的机器装置,可以按照人类指挥或提前编排的既定路径进行运动,替代人工从事重复度较高的生产制造工作,可以替代人工从事上下料、锻造切割、焊接、喷涂、装配、码垛等工业生产作业工作。工业机器人应用集中在汽车、电子、金属制品、橡胶和塑料等行业。汽车行业目前仍是国内工业机器人最主要的下游应用,随着中国制造业产业升级和转型的不断深化,工业机器人的应用将有望更深入衍射到3C、半导体、新能源、物流仓储等领域,需求更加多元化。

-年我国工业机器人下游应用占比及年其他类详细占比情况:

(二)服务机器人

广义服务机器人的定义为“以服务为核心的自主或半自主机器人”,是除工业机器人以外的,用于非制造业并服务于人类的各种先进机器人的统称。服务机器人应用范围很广,涵盖了维护、保养、修理、运输、清洗、保安、救援、巡检等领域。服务机器人根据应用场景的不同又可分为家用服务机器人(狭义的服务机器人)和特种机器人(专用服务机器人)两大类。常见的家用服务机器人有扫地机器人、娱乐机器人、烹饪机器人等。

相比工业机器人,服务机器人属于新兴行业,但增速更快。服务机器人萌芽于上世纪90年代,0年至年为起步阶段,全球规模较大的服务机器人企业产业化历史也多在5-10年,大量公司仍处于前期研发阶段,年至今,依托人工智能技术进步,服务机器人应用场景和服务模式不断拓展延伸,带动全球服务机器人市场规模高速增长,当前服务机器人市场规模的增速远高于工业机器人,年以来全球服务机器人市场规模年均增速达21.9%。

年全球服务机器人市场结构:

(三)特种机器人(专业服务机器人)

特种机器人(专业服务机器人)包括国防机器人、农场机器人、医疗机器人、电力机器人等。智能巡检机器人属于特种机器人范畴。近年来,世界各国主要研发的专业服务机器人重点在医疗、物流、军事、极限环境等特殊领域。考虑到特殊领域的工作环境条件往往比较恶劣或者具有危险性,对专业服务机器人具有需求刚性。

因此,未来特殊工作环境的应用场景将会不断催生出专业服务机器人新品种,当前特种机器人市场规模相比工业和狭义服务机器人较小,但其作用和意义重大,未来潜力巨大,年至今,全球特种机器人销售额始终保持两位数增长。根据IFR的预测,至年,全球特种机器人市场规模预计达到49.5亿美元。

目前,国内外特种机器人行业部分较为知名的企业代表如下:

02

广义服务机器人产业链

广义服务机器人产业链图谱:

(一)上游:硬件(基础层)及技术支持(技术层):

服务机器人上游为核心零部件厂商,核心零部件包括芯片、传感器、控制器、减速器及伺服电机等。一般这类厂商都属于技术类公司,注重核心技术研发,硬件及核心零部件厂商以提升技术和降低成本为主要任务,AI技术公司则以算法和数据为核心竞争力。

硬件及技术支持类公司:

硬件中芯片和智能传感器具有极高的技术门槛,且生态搭建已基本成型,目前芯片的主要贡献者是Nvidia、Mobileye和英特尔在内的国际科技巨头。智能传感器领域主要被博世、欧姆龙、ST、罗姆、NXP、ADI、英飞凌、楼氏电子、索尼、三星等巨头企业垄断。跨国公司占据了87%的市场份额,但国产替代在加速,核心零部件方面,国内有寒武纪科技、遂源等AI芯片企业,有思岚科技、镭神智能等传感器企业。

伺服系统与控制器市场较为集中,减速器寡头垄断。IFR数据显示,机器人的成本主要集中在零部件端,其中核心零部件的比例在70%左右,减速器、伺服电机、控制器占比分别为36%、24%、12%。控制器领域,“四大家族”(ABB、库卡、发那科、安川)全部实现自给自足。伺服电机领域,安川是市场上的有力竞争者,年在中国伺服系统销量份额达到15%,与松下同处第一阵营;发那科掌握核心技术,无需外购;欧系ABB和库卡由外部供应。

减速器领域,技术含量最高,“四大家族”尚无突破,市场主要由日本的纳博特斯克和哈默尼克两家企业把控。“四大家族”通过掌握零部件端、本体、集成应用端的技术,建立对成本和产业链的把控力。

AI技术公司中,在核心算法和基础理论领域,美国是目前人工智能基础理论和算法发展水平最高的国家,Facebook、谷歌、IBM和微软等科技巨头均重点布局人工智能算法及算法框架等高门槛技术。技术层解决具体类别问题,这一层级主要依托运算平台和数据资源进行海量识别训练和机器学习建模,开发面向不同领域的应用技术,包括语音识别、自然语言处理、计算机视觉和机器学习技术。

科技巨头谷歌、IBM、亚马逊、苹果、阿里、百度都在该层级深度布局。中国人工智能技术层在近年发展迅速,发展重点聚焦于计算机视觉、语音识别和语言技术处理领域,除BAT等平台型科技企业之外,还出现了如商汤(图像识别)、旷视(图像识别)、科大讯飞(语音识别)、图灵机器人(语义识别及操作系统)等诸多公司,处于发展上升期。

(二)中游:机器人主体(应用层):

服务机器人中游是机器人本体厂商,向下到系统集成商,包括控制/伺服系统、操作系统、导航及路径规划、感知交互等。一般这类厂商都属于产品类公司,产品类公司注重需求定位,其产品质量、品牌、营销以及生态构造是重要壁垒。得益于技术类公司的基础和AI算法的开源,应用层进入门槛相对较低。目前,产品类公司的规模和数量在服务机器人产业链分布中占比最大。

产品类公司:

应用层解决实践问题,是应用硬件和技术针对行业提供产品、服务和解决方案,我国应用层企业将硬件和技术集成到自己的产品和服务,从特定行业或场景切入,其核心是商业化。

我国目前机器人产业链中的优势环节在系统集成,而系统集成属于下游“销售”及“品牌、服务、循环”环节,增加值相对较高,有望为企业带来较为丰厚的回报。系统集成商符合盈利能力强、收入规模大的特点,具备进入良性循环并做大做强的基础。

宏碁集团创办人施振荣先生在年提出制造业“微笑曲线”:

机器人系统集成:

因此,在技术门槛较低机器人本体零部件和的功能零部件上,最好是能够做到颗针对性地对不同的应用场景做出适应性的调整,比如在数据机房中,地板下出风,需要做独立悬挂,但整机产业链达不到及时的调整,就需要厂商自己去设计和找人代加工独立悬挂的底盘。

在控制系统中,最好在软件、机光电一体化设计、导航及路径规划、感知交互上,最好能够在大数据的基础上针对行业特性做出适当的调试和优化,比如在机房巡检中,通过视觉识别算法,对机房设备指示灯状态及仪表进行识别,但视觉只是识别的一部分,真正核心的是在后端的产品逻辑,机柜指示灯识别的关键是拓扑关系建立,角度不同指示灯的形状会呈现不同的梯形状态,建立拓扑公式后能解决特殊形状指示灯的识别问题。

另外,所有标示的指示灯可选配,客户

分享 转发
TOP
发新话题 回复该主题